Analytical and experimental analysis of bond behavior between concrete and GFRP bars / Análise teórica e experimental do comportamento da aderência entre o concreto e barras de fibra de vidro impregnada por polímero

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

The use of new materials in civil construction combined with high technology processes leads to improvements in many aspects, like cost reductions and better structural behavior. Recently, due to corrosion of the steel bars, among other factors, many researchers have been suggesting the use of non-metallic bars as a substitution of the steel reinforcement in concrete structures. Besides, the non-metallic bars allow smaller clear cover and make possible lower maintenance cost, other advantages can be mentioned, such as: low specific weight, high tensile strength, electrical, thermal and magnetic non-conductivities, and others. This work analyzes the bond behavior between GFRP bars (Glass Fiber Reinforced Polymer bars) and concrete, through state-of-art and standard pull-out tests, according to RILEM-FIP-CEB (1973). The influence of some parameters, as compressive concrete strength and GFRP bar diameter, was considered. Based on the experimental results, it was aimed at comparing the bond behavior of the GFRP-concrete bar with the steel-concrete bar, in addition to the verification of bond strength formulations established by the standards codes and the bibliography for structures reinforced with steel bars and FRP bars. Further, the bond numerical analysis was carried out through finite elements. In the pull-out tests, the influence of mechanical properties and superficial conformation on the GFRP bars was observed in the bond behavior, presenting smaller bond strength than the steel bars of similar diameter. The value of the experimental bond strength was larger than the value proposed by standards codes. The numerical models did not represent well the experimental behavior given that a linear numerical simulation was considered, but, actually, the experimental load x slip behavior is non-linear.

ASSUNTO(S)

concreto gfrp bars numerical simulation barras de gfrp simulação numérica pull-out aderência barra-concreto bond arrancamento concrete

Documentos Relacionados