Analysis of the Symbiotic Performance of Bradyrhizobium japonicum USDA 110 and Its Derivative I-110 and Discovery of a New Mannitol-Utilizing, Nitrogen-Fixing USDA 110 Derivative †

AUTOR(ES)
RESUMO

Previously, Bradyrhizobium japonicum USDA 110 was shown to contain colony morphology variants which differed in nitrogen-fixing ability. Mannitol-utilizing derivatives L1-110 and L2-110 have been shown to be devoid of symbiotic nitrogen fixation ability, and non-mannitol-utilizing derivatives I-110 and S-110 have been shown to be efficient at nitrogen fixation. The objectives of this study were to determine the effect of media carbon sources on the symbiotic N2-fixing ability of strain USDA 110 and to compare the effectiveness of strain USDA 110 and derivative I-110. Based on acetylene reduction activity and the nitrogen content of 41-day-old soybean plants, neither derivative I-110 nor cultures of USDA 110 grown in media favoring non-mannitol-using derivatives had symbiotic nitrogen fixation that was statistically superior to that of cultures of USDA 110 grown in media favoring mannitol-using derivatives. In another experiment 200 individual nodules formed by strain USDA 110 grown in yeast extract gluconate were screened for colony morphology of occupying variant(s) and acetylene reduction activity. Nodules occupied by mannitol-using derivatives (large colony type on 0.1% yeast extract-0.05% K2HPO4-0.08% MgSO4 · 7H2O-0.02% NaCl-0.001% FeCl3 · 6H2O [pH 6.7] with 1% mannitol [YEM] plates) had a mean acetylene reduction activity equal to that of nodules occupied by non-mannitol-using derivatives (small colony type on YEM plates). A total of 20 large colonial derivatives and 10 small colonial derivatives (I-110-like) were isolated and purified by repeated culture in YEM and YEG (same as YEM except 1% gluconate instead of 1% mannitol) media, respectively, followed by dilution in solutions containing 0.05% Tween 40. After 25 days of growth, soybean plants inoculated with the large colony isolates had mean whole-plant acetylene reduction activity, whole-plant dry weight, and whole-plant nitrogen contents equal to or better than those of plants inoculated with either the small colony isolates (I-110-like) or the I-110 (non-mannitol-using) derivative. Hence, the existence of a mannitol-utilizing derivative that fixes nitrogen in a culture of strain USDA 110 obtained from the U.S. Department of Agriculture, Beltsville, Md., was established. This new USDA 110 derivative was designated as MN-110 because it was a mannitol-utilizing nitrogen-fixing USDA 110 derivative. This derivative was morphologically indistinguishable from the non-nitrogen-fixing derivative L2-110 found in cultures obtained earlier from the U.S. Department of Agriculture, Beltsville. DNA-DNA homology and restriction enzyme analyses indicated that MN-110 is genetically related to other USDA 110 derivatives that have been characterized previously.

Documentos Relacionados