Analysis of murine major histocompatibility complex class II-restricted T-cell responses to the flavivirus Kunjin by using vaccinia virus expression.

AUTOR(ES)
RESUMO

The present paper analyzes the influence of major histocompatibility complex (MHC) class II (Ir) genes on MHC class II-restricted T-cell responses to West Nile virus (WNV) and recombinant vaccinia virus-derived Kunjin virus antigens and identifies the immunodominant Kunjin virus antigens. Generally, mice were primed by intravenous infection with WNV or Kunjin virus, and their CD4+ T cells were stimulated in vitro 14 days later with WNV or Kunjin virus antigens to pulse macrophage or B-cell antigen-presenting cells (APC). WNV-specific in vitro T-cell responses from H-2b mice were higher than those from H-2d, H-2k, and H-2q mice. When recombinant vaccinia virus-derived Kunjin virus antigen preparations were tested in vitro, Kunjin virus-immune T cells of H-2b haplotype responded most strongly to structural (prM, C, E) and membrane-associated nonstructural (NS1) proteins encoded by VKV 1031 and showed weaker responses to cytosolic nonstructural protein NS5 (VKV 1022), whereas the responders of H-2k haplotype responded most strongly to the antigens encoded by VKV 1022 and gave lesser responses to VKV 1031. H-2d T cells gave weaker responses than either H-2b or H-2k cells, with responses to VKV 1031 generally being higher than those to VKV 1022. Responses to VKV 1023 or VKV 1024 encoding all of the NS3 to NS5 gene sequence or to VKV 1023 encoding all of NS3 were weak or absent. Within a given inbred strain, B cells and macrophages differed in their abilities to present recombinant vaccinia virus-derived Kunjin virus antigens, both in terms of magnitude of T-cell responses induced and the particular Kunjin virus protein presented. T cells from different non-MHC genetic backgrounds varied in their requirements of macrophage numbers as APC for maximum reactivity, suggesting that the concentration of class II MHC antigens and other molecules affecting APC-T-cell interaction varied in mice with different genetic backgrounds. Regardless of MHC haplotype, responses to VKV 1024, which encompasses VKV 1023 and VKV 1022, were either absent or lower than those to VKV 1022, possibly reflecting differences in the processing requirements of these two proteins. When mice were primed intravenously with recombinant vaccinia virus and when their CD4+ T cells were stimulated in vitro with native Kunjin virus antigens, VKV 1031 primed more efficiently than Kunjin virus and VKV 1022 primed similarly to Kunjin virus.

Documentos Relacionados