Analysis of genomic sequence features related to alternative splicing events (intron retention) in the human transcriptome / Análise de características das seqüencias genômicas relacionadas a eventos de splicing alternativo do tipo retenção de intron no transcriptoma humano

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Most eukaryotic genes are split in exons and introns, requiring mRNA processing to remove intervening sequences and join exons (splicing). Exon/intron borders are defined by splice sites that are normally recognized with high fidelity, yielding the same processed mRNA each time. Notwithstanding such precise recognition, alternative joining of exons has been observed (alternative splicing) and is the focus of many recent studies, due to its importance in several biological processes. This alternative mRNA processing can be mainly of three types: exon skipping, whereby an exon may be included or not in the mature mRNA; alternative use of splice sites, resulting in longer or shorter exons and intron retention, the least studied type whereby an intronic sequence is maintained in the mature mRNA. One of the key aspects in understanding alternative splicing is to know the mechanisms that lead to the generation of different transcripts. Coherent with the importance of splice sites in mRNA splicing, intron retention seems to be caused by failure in the recognition of those that are sub-optimal. As splice sites are recognized in pairs by bridging either exons or introns, depending on which is the shortest, failure to recognize an exon or an intron leads to different types of alternative splicing (exon skipping or intron retention, respectively). This way, the occurrence of intron retention is believed to be associated to failure in recognition of short introns also. Although studies on individual retained introns have addressed such issues, few systematic surveys of large amounts of data have been conducted on the general features leading to intron retention. To this end, we performed a bioinformatics analysis of human genome and transcriptome (mRNA) sequences stored in computer format. To perform the computational analyses we developed a complete alternative splicing annotation system. We partitioned intron retention events identified in expressed sequences by our annotation system in two groups based on the relative abundance of both isoforms (one group of events with <50% and another with >50% of transcripts retaining the intron) and compared relevant features. We found that a higher frequency of intron retention in human is associated to weaker splice sites, genes with shorter intron lengths and higher expression level, and lower density of a set of exonic inhibitory elements and the intronic splicing enhancer GGG. Both groups of events presented conserved events in mouse, in which the retained introns were also short and presented weaker splice sites. Although our results confirmed that weaker splice sites are associated to intron retention, they showed that a non-negligible fraction of events can not be explained by this feature alone. Our analysis suggests that cis-regulatory elements are likely to play a crucial role in regulating intron retention and also revealed previously unknown features that seem to influence its occurrence. These results highlight the importance of considering the interplay among these features in the regulation of the relative frequency of intron retention.

ASSUNTO(S)

transcriptome intron retention relative isoform frequency freqüência relativa de isoformas splicing alternativo alternative splicing transcriptoma retenção de intron

Documentos Relacionados