Análise do comportamento eletroaeroelástico de uma seção típica para geração piezelétrica de energia / Electroaeroelastic behavior analysis of a typical section for piezoelectric energy harvesting

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

13/02/2012

RESUMO

Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. The use of a typical airfoil section is a convenient approach to create instabilities and persistent oscillations in aeroelastic energy harvesting. This work analyzes the linear and non linear versions of two airfoil-based aeroelastic energy harvesters using piezoelectric transduction: (1) with two degrees of freedom (DOF) and (2) with three DOF. The governing dimensionless electroaeroelastic equations are given in each case with a resistive load in the electrical domain for predicting the system behavior. First the interaction between piezoelectric power generation and linear and non linear aeroelastic behavior of a typical section with 2-DOF is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limitcycle oscillations can be obtained below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Later the linear and non linear piezoaeroelastic behavior of a typical section with 3-DOF is investigated. Free play nonlinearity is added to the control surface DOF and it is shown that nonlinear limit-cycle oscillations can be obtained over a range of airflow speeds. In the last case cubic hardening nonlinearity is modeled in the pitch DOF (in addition to the free play in the control surface) and bounded oscillations are obtained for a range of airflow speeds. Concentrated nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.

ASSUNTO(S)

geração de energia mechanical vibrations piezeletricidade piezoelectricity vibrações mecânicas aeroelasticidade aeroelasticity energy harvesting

Documentos Relacionados