Análise conformacional e das interações eletrônicas de algumas N-metóxi-N-metil-acetamidas-α-heterossubstituídas / Conformational analysis and electronic interactions of some N-methoxy-N-methyamides α-heterossubstituted

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

30/06/2011

RESUMO

This thesis deals with the synthesis and conformational analysis of some α-heterosubstituted N-methoxy-N-methyl-amides (Weinreb amides) Z-C(O)-N(OMe)Me (Z= CH2F (1), CH2OMe (2), CH2OPh (3), CH2Cl (4), CH2Br (5), CH2SEt (6) and Me2CSEt (7). The analysis of the carbonyl band in the IR spectra supported by B3LYP/6 311++G(3df, 3pd calculations along with the NBO analysis indicated the existence of a cis-gauche conformational equilibrium i.e. (c) and (g) for (1) and (3), (c1, c2) and (g1, g2) for (2), (c) and (g1, g2) for (4-6) and (g1, g2) for (7). In the gas phase the g conformer population prevails slightly over the c one for (1) and (3); the (c1 + c2) population prevails over the (g1 + g2) for (2), and the (g1 + g2) conformer population is more abundant than the population (c) for (4), (5) and (6). In n-hexane solution the cis conformer is more abundant for (1-3). The occurrence of Fermi resonance in the VCO region, in n-hexane, precludes the estimative of relative populations of the (c, g1, g2) conformers for (4-6). The SCI-PCM calculations agree with the solvent effect on the VCO band component relative intensities for (1-3). NBO analysis showed that the nN→π*CO orbital interaction is the main factor which stabilizes the gauche (g, g1, g2) conformers for (1-6) into a larger extent relative to the cis (c, c1, c2) ones. The nY→π*CO, σC-Y→π*CO, πCO→σ*C-Y and π*CO→σ*C-Y orbital interactions still contribute, but into a minor extent for the stabilization of the gauche conformers relative to the cis ones. The existence of some pyramidalization at the nitrogen atom of the Weinreb amides (1-6) is responsible for the occurrence of Yδ-(4)…Oδ-(9) and Yδ-(4)…Nδ-(7) short contacts in the gauche (g, g1, g2) conformers, which originates strong repulsive Coulombic interactions, acting in opposition to the large orbital stabilization of the gauche conformer with respect to the cis one. The same effects are responsible for the larger stabilization of the (g1, g2) conformers of (7) which in turn precludes the existence of the c conformer. Therefore, a delicate balance of the Coulombic and orbital interactions seems to be responsible for the observed stabilization of the gauche (g, g1, g2) and cis (c, c1, c2) conformers, both in the gas phase and in the solution for (1-6) and (7). However, the cis conformer predominance, in non polar solvents, for the α-substituted N-methoxy-N-methyl acetamides (1-3), bearing in α first row (fluorine and oxygen) atoms, is in the opposite direction to the gauche conformer preference for the remaining α-substituted N-methoxy-N-methyl acetamides (4-6), bearing in α second and third rows (chlorine, sulfur, bromine) atoms. However the g1 and g2 conformers are the only ones present for (7).

ASSUNTO(S)

α-substituted n-methoxy-n-methyl acetamides análise conformacional cálculos teóricos conformational analysis electronic interactions espectroscopia infravermelha infrared spectroscopy interações eletrônicas n-metóxi-n-metilamidas α-substituídas theoretical calculations

Documentos Relacionados