AN INVESTIGATION OF THE HEAT TRANSFER PERFORMANCE OF DUAL IMPROVED INTERMIG IMPELLERS IN A STIRRED TANK WITH AN INNER HEATING COIL

AUTOR(ES)
FONTE

Braz. J. Chem. Eng.

DATA DE PUBLICAÇÃO

09/12/2019

RESUMO

Abstract The heat transfer process in a stirred tank of diameter T=0.5m equipped with dual-layer improved Intermig impellers and helical coils was investigated by experiment and numerical simulation methods. The temperature field, the temperature boundary layer lateral to the coil and the heat transfer coefficient were measured at different rotational speeds. The standard k-ε turbulence model and multiple reference frames combined with a sliding mesh method were adopted in the numerical simulation. The results show that the temperature errors between numerical simulation and experimental measurement were within 2K. The temperature in the stirred tank gradually rose from top to bottom and inside to outside, and the maximum temperature difference was within 2K. The average thickness of the temperature boundary layer outside the helical coil is 3.66 mm. According to the experiments and numerical simulations, the heat transfer coefficient correlations, including Nu and Re, Nu and ε of the helical coil outer side, were obtained, and the trends of heat transfer coefficients are consistent and regular. The correlation of the heat transfer coefficient lateral to the coil was acquired from the experimentally measured data. The research results can serve as a guide for the design and engineering application of mass and heat transfer processes in stirred tanks with improved Intermig impellers.

Documentos Relacionados