An egr-1 (zif268) Antisense Oligodeoxynucleotide Infused Into the Amygdala Disrupts Fear Conditioning

AUTOR(ES)
FONTE

Cold Spring Harbor Laboratory Press

RESUMO

Studies of gene expression following fear conditioning have demonstrated that the inducible transcription factor, egr-1, is increased in the lateral nucleus of the amygdala shortly following fear conditioning. These studies suggest that egr-1 and its protein product Egr-1 in the amygdala are important for learning and memory of fear. To directly test this hypothesis, an egr-1 antisense oligodeoxynucleotide (antisense-ODN) was injected bilaterally into the amygdala prior to contextual fear conditioning. The antisense-ODN reduced Egr-1 protein in the amygdala and interfered with fear conditioning. A 250-pmole dose produced an 11% decrease in Egr-1 protein and reduced long-term memory of fear as measured by freezing in a retention test 24 h after conditioning, but left shock-induced freezing intact. A larger 500-pmole dose produced a 25% reduction in Egr-1 protein and significantly decreased both freezing immediately following conditioning and freezing in the retention test. A nonsense-ODN had no effect on postshock or retention test freezing. In addition, 500 pmole of antisense-ODN infused prior to the retention test in previously trained rats did not reduce freezing, indicating that antisense-ODN did not suppress conditioned fear behavior. Finally, rats infused with 500 pmole of antisense-ODN displayed unconditioned fear to a predator odor, demonstrating that unconditioned freezing was unaffected by the antisense-ODN. The data indicate that the egr-1 antisense-ODN interferes with learning and memory processes of fear without affecting freezing behavior and suggests that the inducible transcription factor Egr-1 within the amygdala plays important functions in long-term learning and memory of fear.

Documentos Relacionados