An Assessment of "Hidden" Heterogeneity within Electromorphs at Three Enzyme Loci in Deer Mice

AUTOR(ES)
RESUMO

Allelic heterogeneity within protein electromorphs at three loci was examined in populations of deer mice (Peromyscus maniculatus) collected from five localities across North America. We used a variety of electrophoretic techniques (including several starch and acrylamide conditions, gel-sieving, and isoelectric focusing) plus heat denaturation. Of particular interest was the supernatant glutamate oxalate transaminase system (GOT-1; aspartate aminotransferase-1 of some authors), which under standard electrophoretic conditions had been shown to exhibit basically a two-allele polymorphism throughout the range of maniculatus. The use of all of the above techniques failed to uncover any additional variation for GOT-1 in these populations. Similarly, no new scorable variation was resolved at the essentially monomorphic malate dehydrogenase-1 locus by additional conditions of electrophoresis. In marked contrast to the results for the above two enzymes, the use of multiple conditions of electrophoresis resolved the 8 standard-condition electromorphs of esterase-1 into a total of 23 variants showing strong geographic differentiation in frequency. These 23 electromorphs were further divided into a total of 35 variants by thermal stability studies. However, the allelic nature of all of the thermal stability esterase variants remains to be documented. The results of this study, taken together with the remarkable geographic heterogeneity for this species in ecology, morphology, karyotype and mitochondrial DNA sequence, suggest that some form of balancing selection may be acting to maintain the GOT-1 polymorphism.

Documentos Relacionados