All-ceramic and porcelain-fused-to-metal fixed partial dentures: a comparative study by 2D finite element analyses

AUTOR(ES)
FONTE

Journal of Applied Oral Science

DATA DE PUBLICAÇÃO

2007-10

RESUMO

All-ceramic fixed partial dentures (FPDs) have an esthetic approach for oral rehabilitation. However, metal-ceramic FPDs are best indicated in the posterior area where the follow-up studies found a lower failure rate. This 2D finite element study compared the stress distribution on 3-unit all-ceramic and metal-ceramic FPDs and identified the areas of major risk of failure. Three FPD models were designed: (1) metal-ceramic FPD; (2) All-ceramic FPD with the veneering porcelain on the occlusal and cervical surface of the abutment tooth; (3) All-ceramic FPD with the veneering porcelain only on the occlusal surface. A 100 N load was applied in an area of 0.5 mm² on the working cusps, following these simulations: (1) on the abutment teeth and the pontic; (2) only on the abutment teeth; and (3) only on the pontic. Relative to the maximum stress values found for the physiological load, all-ceramic FPD with only occlusal veneering porcelain produced the lowest stress value (220 MPa), followed by all-ceramic FPD with cervical veneering porcelain (322 MPa) and metal-ceramic FPD (387 MPa). The stress distribution of the load applied on the abutments was significantly better compared to the other two load simulations. The highest principal stress values were low and limited in a small area for the three types of models under this load. When the load was applied on the pontic, the highest stress values appeared on the connector areas between the abutments and pontic. In conclusion, the best stress values and distribution were found for the all-ceramic FPD with the veneering porcelain only on the occlusal surface. However, in under clinical conditions, fatigue conditions and restoration defects must be considered.

Documentos Relacionados