Ag@Activated Carbon Felt Composite as Electrode for Supercapacitors and a Study of Three Different Aqueous Electrolytes

AUTOR(ES)
FONTE

Mat. Res.

DATA DE PUBLICAÇÃO

08/11/2018

RESUMO

The main challenge for the development of a high efficiency supercapacitor is the electrode material. Developing electrode materials with high specific electrical capacitance and low electrical resistance enables an increase in the energy accumulated in the device. In addition, it is expected that the electrode material presents a simple procedure for preparation having low production cost and being environmentally friendly. This work is based on the deposition of silver nanoparticles on activated carbon felt (Ag@ACF) as a supercapacitor electrode. The samples were characterized by field emission gun scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and textural analysis. Supercapacitor behavior was evaluated by galvanostatic charge-discharge curves, cyclic voltammetry and electrochemical impedance spectroscopy using a symmetrical two-electrode Swagelok type cell, and three different aqueous solution electrolytes: 2 M H2SO4, 6 M KOH and 1 M Na2SO4. Ag@ACF presented a high specific capacitance in KOH, about 170 F g-1, which makes it an interesting material for supercapacitor electrodes and it showed good specific electrical capacitance, low resistance and high cyclability.

Documentos Relacionados