Adaptations to high-intensity intermittent exercise in rodents

AUTOR(ES)
FONTE

American Physiological Society

RESUMO

In humans, exercise-induced plasma volume (PV) expansion is typically associated with an increase in plasma albumin content, due in part to an increase in hepatic albumin synthesis. We tested the ability of a 12-day high-intensity intermittent exercise protocol to induce an increase in PV in rodents. Since albumin synthesis is transcriptionally regulated, we tested the hypothesis that exercise training would induce an increase in hepatic albumin gene expression. Fifty adult male Sprague-Dawley rats weighing between 245 and 350 g were randomly assigned to one of five groups: cage control (CC), sham exercise (sham), continuous moderate-intensity exercise training (MI), high-intensity intermittent exercise training (HI), or a single day of HI training (1-HI). Twenty-four hours after the last training session, rats were anesthetized. PV was determined, and the liver was removed, flash frozen, and stored for later analysis. Citrate synthase (CS) activity of the red quadriceps muscle, a marker of aerobic adaptation, increased with training (MI and HI) and in response to 1-HI (P < 0.05). We did not see a significant exercise-induced PV expansion as PV averaged 23.6 ± 2.7 ml/kg body wt in the CC group and 26.6 ± 1.3 ml/kg body wt in the HI group (P > 0.05). However, hepatic albumin mRNA expression, as determined by real-time PCR, increased 2.9 ± 0.4- and 4.1 ± 0.4-fold after MI and HI, respectively, compared with CC. A single bout of HI (1-HI) did not alter hepatic albumin mRNA expression. These data demonstrate an increase in both CS activity and hepatic albumin gene expression with 12 days of aerobic exercise training in the rodent with a rapid (within 24 h) adaptation in the skeletal muscle to high-intensity intermittent exercise.

Documentos Relacionados