Acuidade visual e codificação neural da mosca Chrysomya megacephala / Visual acuity and neural encoding of the fly Chrysomya megacephala

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

Descrevemos os processos de captura, criação e micromanipulação cirúrgica das moscas Chrysomya megacephala. Apresentamos os processos de geração de estímulo e registro da atividade dos dois neurônios H1 localizados na placa lobular de seu cérebro. Um primeiro resultado apresentado refere-se a acuidade de seu sistema visual. Desenvolvemos um procedimento para comparar sua taxa de disparos espontâneos com as respostas do neurônio H1 quando sujeito a estímulos de excitação e inibição. Mostramos que o sistema visual da mosca não está apenas adaptado a detectar grandes fluxos ópticos mas também, é capaz de detectar pequenas velocidades de aproximadamente 1, 5o.s-1 e de apenas 0,25o de amplitude. Estes valores mostram que a mosca é capaz de detectar deslocamentos angulares muito menores do que sua abertura omatidial, = 1 2o. Outro resultado apresentado é obtido ao estudarmos o processo de codificação-decodificação neural. Alguns sistemas sensoriais agem como um conversor analógico-digital, recebendo um estímulo S(t) e codificando-o em uma sequência de pulsos, spikes. O processo de decodificação da resposta neural consiste em receber este conjunto pulsos e gerar uma estimativa Se(t) do estmulo. Este processo requer a computação e subsequente inversão de funções de correlação de alta ordem. A dimensão das matrizes que representam estas funções pode se tornar proibitivamente grande. Apresentamos um eficiente método para reduzir estas funções de correlação. Esta aproximação tem baixo custo computacional, evita a inversão de grandes matrizes e nos da um excelente resultado para a reconstrução do estímulo. Testamos a qualidade de nossa reconstrução sobre estímulos de rotação e translação. A contribuição dos núcleos de segunda ordem para a reconstrução do estímulo é de apenas 8% da contribuição dos núcleos de primeira ordem. Entretanto, em instantes específicos, a adição destes núcleos pode representar uma contribuição de ate 100%. Finalmente, investigamos quais atributos do estímulo são codificados pelos neurônios H1. Nosso espaço de estímulos possui um conjunto da ordem de 2 × 1096 elementos. É impossível imaginar que o sistema formado pelos dois neurônios H1 seja capaz de codificar eficientemente esta enorme quantidade de elementos. É razoável considerar que este sistema seja ao menos capaz de codificar um atributo essencial do movimento, seu sentido - rotações horizontais para direita ou para esquerda. Desta forma, apresentamos dois estímulos distintos para a mosca, um no qual suas velocidades são retiradas de uma distribuição Gaussiana e outro que contem apenas o sentido deste movimento. Obtemos uma correlação da ordem de 80 - 90% entre as estimativas de ambos os estímulos, estimativas obtidas através do processo de reconstrução linear. Obtemos aproximadamente 85% de eficiência na predição do sentido deste movimento. Ao utilizarmos a Teoria da Informação, encontramos uma diferença de apenas 10% entre as taxas de informação transmitida sobre os estímulos Gaussiano e sua versão reduzida. Concluímos que a propriedade comum a estes dois estímulos, o sentido do movimento, é o atributo relevante a ser codificado pelos neurônios H1.

ASSUNTO(S)

second order stimulus reconstruction visual system reconstrução de segunda ordem do estímulo neurobiofísica neurobiophysics sistema visual neurônios h1 dimensional reduction of stimulus h1 neurons redução dimensional do estímulo

Documentos Relacionados