Activity of the nitric oxide synthase/nitric oxide system in bovine oocytes / Atividade do sistema óxido nítrico sintase/óxido nítrico em oócitos bovinos

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Nitric oxide (NO) is a chemical messenger detected in several cell types such as endothelial cells, neurons and macrophages, performing also varied functions as vasodilatation, neurotransmission and induction of cell death. NO is generated by the activity of the enzyme nitric oxide synthase (NOS), which has been detected in several organs including the reproductive system. The NOS/NO system seems to play an important role in oocyte maturation besides other functions. However, despite the evidence, there are few studies on the possible role of this system in bovine oocytes. The present study aimed to investigate the importance of the NOS/NO system on in vitro maturation (IVM) of bovine oocytes. The effects of NOS inhibition during IVM in the presence of increasing concentrations of NOS inhibitor (L-NAME, 0-1mM) and of the increase in NO during IVM with the NO donor SNAP (0-1mM) on maturation rates (metaphase II) and on blastocyst development after in vitro fertilization were assessed. The effect of prematuration with butyrolactone I (10µM BLI) followed by IVM, in the presence or not of NO inhibitor or donor in each culture period on blastocyst development was also investigated. After 22h IVM, L-NAME treated groups showed a lower (~80%, P<0.05) metaphase II (MII) rate when compared with controls (95.5%). Blastocyst rates were similar among all groups (34 to 41.5%, P>0.05). Only 7.2% (P<0.05) of oocytes matured with the highest SNAP concentration (10-3M) reached MII. The other treatments (71.6; 72.4 and 54.8% for control, 10-7 and 10-5M, respectively) were similar among them (P>0.05). High SNAP concentration (10-3M) blocked blastocyst development, while the other treatments presented about 38% blastocyst rates (P<0.05). Blastocyst (26.3 to 34.1%) and hatching rates (14.8 and 22.0%) were similar (P>0.05) when low L-NAME concentration (10-7M) was added or not during prematuration, maturation or both. Blastocyst rates (25.5 to 39.7%) were also similar (P>0.05) whether SNAP (10-7M) was added or not during prematuration, IVM or both. When low concentration of SNAP (10-7M) was added during both prematuration and IVM, hatching rates were increased (27.5%, P<0.05) when compared with oocytes cultured in the presence of SNAP only during prematuration or IVM or without it (14.2 to 18.6 %, P>0.05). These results shoe the dual effect of NO on bovine oocytes, which had maturation rates decreased when NO synthesis was inhibited and nuclear maturation and blastocyst development were blocked by excess NO.

ASSUNTO(S)

meiose Óxido nítrico oócito bovino in vitro maturation nitric oxide snap bovine oocyte l-name maturação in vitro meiosis l-name snap

Documentos Relacionados