Action of photosensitizers dyes in homogeneous and liposomal microheterogeneous medium to control Streptococcus mutans growing / Ação de corantes fotossensíveis em meio homogêneo e micro heterogêneo de lipossomos no controle do crescimento de Streptococcus mutans

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

Unbalance in the development of the mouth macrobiota can originate some pathologies, dental cavity being among them - a chronic disease - contagious, of multifactorial etiology, but extremely related to the Streptococcus mutans bacteria, which, through its fermentative metabolism, destroys tooth mineralized structures. Besides that, the increase in resistance to antibiotic therapy, due to the existence of biofilm (also formed by S. Mutans) and to non successful bactericide treatments, makes alternative antimicrobial techniques development an important focus in this research area. So, in search of new methodologies against microorganisms studies using the Photodynamic Therapy (TFD) have been employed to achieve inactivation of bacteria such as S. mutans. TFD is a therapeutical modality in which there is an integration of a visible light, a dye and oxygen and, when they interact, there is the production of different reactive oxygen species (ERO?s) which will lead to a sequence of biological events, resulting in a possible cellular death or inactivation, including microorganisms such as S. mutans. The aim of this work was to evaluate the action of TFD on S. mutans bacteria in planktonic medium of forming biofilm. So, the standardized methodology allowed the cultivation of bacteria in liquid media (planktonic) or in the biofilm form, making it possible to do tests with the application of the photodynamic therapy. The analysis of the growth curves allowed the evaluation of the anaerobic metabolism of S. mutans, which consumes fermentable sugars (glucose, fructose, sucrose and maltose), and is apt in acid production. According to what is was proposed, a odontological resin photopolymerizer was used as light source in TFD. This light is sent in variable wave lengths (made possible thanks to the change of the light filter in the equipment) which photoactivate the different dyes used, such as Rose Bengal, Protoporfirine IX (PPIX) and the Zinc Phtalocyanine. These photosensitive agents, after being irradiated, produce reactive oxygen species, specially the singlet oxygen, which leads to the bacterial inactivation observed in the experiments done. Nonetheless, the light concentrations and dyes used in the bacterial inactivation have shown low toxicity values for fibroblasts cultures. Besides that, the high difference between the dye concentrations which causes the death of bacteria in the presence and absence of light indicates that the compounds produced by the photoactivation are the responsible for the bacterial death in planktonic media. As for the biofilm formed by S. mutans, it is possible to have a decrease in its formation with TFD as much as with the use of fluoride. Cells irradiated immediately after the dye addition were similarly inactivated after TFD, so a previous incubation for the homogeneous distribution of the photosensitive agent can be discarded. Apparently, the TFD did not cause changes in the total APTase activity extracted from bacteria membrane. The experiments for the determination of dye location in the cell or for the evaluation of its acidogenic capacity were not conclusive in relation to the possibility of reactive species to be causing damage to the wall, plasmatic membrane or still in some cytoplasmatic biomolecule of the bacteria. In addition, the studies of lipidic peroxidation, DNA analysis and stress proteins after TFD did not bring any conclusive additional information about the specific target of ERO?s that cause bacterial inactivation. This methodology, although can?t be applied in clinic yet, can complement the conventional antimicrobial techniques, being a simple methodology, of easy used and low cost, which can also possibly be associated to the use of different photosensitive agents and adjusted to the needs of odontological practice.

ASSUNTO(S)

spreptococcus mutans streptococcus mutans liposomes terapia fotodinâmica photodynamic therapy (tfd) lipossomos

Documentos Relacionados