Ablação de resinas compostas com laser de Er:YAG sob diferentes fluxos de água / Er:YAG laser ablation of composite resin different water flows

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

Laser in Dentistry is used in several ways. Er:YAG laser has proved to be an efficient tool for removal of composite resin restoration. It is well-known that the lack or the excess of water may make difficulties for the ablation process with this laser, due to its emission wavelength (2940nm) to coincide with the main water absorption peak. The aim of the present work is to investigate the effect of water flow rate variation on composite resin ablation process using Er:YAG laser, through the evaluation of morphological aspects of irradiated surface under scanning electron microscopy; the amount of removed material and the temperature variations during the irradiation with and without water. The experiments were performed using a microsecond pulsed Er:YAG laser system, that is already used in clinical Dentistry. Hybrid composite resin samples were prepared and different conditions of irradiation were used to analyze water real influence: different energy per pulse (100, 200, 300 e 400mJ), pulse repetition rate (5Hz, 10Hz e 15Hz) and water flow rate (zero, 0.01, 0.06, 0.23, 0.32, 0.64 e 0.87ml/s). The results show that the water flow rate influences the ablation mechanism of composite resins using Er:YAG laser, providing a more efficient ablation. There are two mechanisms involved in this process: the explosive vaporization and the thermal-mechanical interaction through water, on which particles are ejected hydrodynamically. Water not only cools the interaction site, but also prevent from melting and resolidification and provides an easier and more precise ablation.

ASSUNTO(S)

laser ablação Água water er:yag composite resin ablarion er:yag resinas compostas laser

Documentos Relacionados