A pump-pore model for transmembrane transport of hydrophilic solutes.

AUTOR(ES)
RESUMO

Transmembrane transport of a hydrophilic solute is presumed to begin when hydrated ligand adheres in Velcro-like fashion to hydrated membrane surface. Asymmetric physical forces cause rolling movements of ligand over membrane surface until contact occurs with appropriate transport machinery, consisting of a pump (Pu) to which is tethered a ligand (Li)-specific perm-selective pore (Po). The Po is in the open form when the Li is attached to an external high-affinity allosteric site on it. The active form of the Pu is stabilized by attachment of the Li to high-affinity internal or low-affinity external allosteric sites. The active form of the Pu induces closure of the Po, even when ligand is bound to it; the inactive conformation of the Pu permits Po opening. Attachment of Li to either one of two binding sites on the active Pu and irreversible envelopment by it in Venus fly-trap fashion trigger transmembrane transport of Li. Multistep attachment of Li is rate-limiting in the transport process. Application of a simple equation derived from relevant kinetic considerations relating velocity of transport (V) to concentration of Li (L), V = k1(L)1/2, gives V-L curves approximating transport data obtained in a variety of biological systems. This model is congruent with the ability of cells to concentrate substances from extremely dilute solutions and with the adaptive informational value to cells of rates of transport.

Documentos Relacionados