A Novel Histidine-Rich CPx-ATPase from the Filamentous Cyanobacterium Oscillatoria brevis Related to Multiple-Heavy-Metal Cotolerance

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

A novel gene related to heavy-metal transport was cloned and identified from the filamentous cyanobacterium Oscillatoria brevis. Sequence analysis of the gene (the Bxa1 gene) showed that its product possessed high homology with heavy-metal transport CPx-ATPases. The CPC motif, which is proposed to form putative cation transduction channel, was found in the sixth transmembrane helix. However, instead of the CXXC motif that is present in the N termini of most metal transport CPx-ATPases, Bxa1 contains a unique Cys-Cys (CC) sequence element and histidine-rich motifs as a putative metal binding site. Northern blotting and real-time quantitative reverse transcription-PCR showed that expression of Bxa1 mRNA was induced in vivo by both monovalent (Cu+ and Ag+) and divalent (Zn2+ and Cd2+) heavy-metal ions at similar levels. Experiments on heavy-metal tolerance in Escherichia coli with recombinant Bxa1 demonstrated that Bxa1 conferred resistance to both monovalent and divalent heavy metals. This is the first report of a CPx-ATPase responsive to both monovalent and divalent heavy metals.

Documentos Relacionados