A novel gene tag for identifying microorganisms released into the environment.

AUTOR(ES)
RESUMO

A novel method using a moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens Ti plasmid pTi15955 was developed as a tag to identify genetically modified microorganisms released into the environment. Pseudomonas fluorescens 1855.344, a plant-growth-promoting rhizosphere bacterium, was chosen as the organism in which to develop and test the system. moc genes carried by pYDH208, a cosmid clone containing a 20-kb segment of the octopine-mannityl opine-type Ti plasmid, conferred on P. fluorescens strains the capacity to utilize mannopine and agropine (AGR) as a sole source of carbon and energy. Modified P. fluorescens strains containing moc or moc::nptII inserted into a chromosomal site were constructed by marker exchange. One such modified strain, PF5MT12, utilized AGR as a sole carbon source and contained detectable levels of mannopine cyclase, an easily assayable enzyme encoded by the moc region. Catabolism of AGR could be used to recover selectively the marked strain from mixed populations containing a large excess of closely related bacteria. Nucleic acid-based detection strategies were developed on the basis of the unique fusion region between Agrobacterium DNA and Pseudomonas DNA in strain PF5MT12. The specificity and sensitivity of detection of PF5MT12 were enhanced by amplifying the fused DNA region by using PCR. The target fragment could be detected at levels of sensitivity comparable to those of other described PCR-based gene tags, even in the presence of high levels of Agrobacterium, Pseudomonas, or Escherichia coli DNA. This gene tag strategy gives a method for direct selection and enumeration of the marked strain from mixtures containing a large excess of closely related bacteria and a sensitive and highly specific system for detection by PCR amplification of the target fragment even in the presence of large amounts of DNA from related or unrelated organisms.

Documentos Relacionados