A human cytomegalovirus early promoter with upstream negative and positive cis-acting elements: IE2 negates the effect of the negative element, and NF-Y binds to the positive element.

AUTOR(ES)
RESUMO

The human cytomegalovirus early promoter for the UL4 gene, which codes for an early viral envelope glycoprotein designated gpUL4, requires immediate-early viral protein two (IE2) synthesis to be activated (C.-P. Chang, C. L. Malone, and M. F. Stinski, J. Virol. 63:281, 1989). We investigated the cis-acting and trans-acting factors that regulate transcription from this UL4 promoter. In transient transfection assays, the viral IE2 protein negated the effect of an upstream cis-acting negative element and enhanced downstream gene expression. A cis-acting positive element contributed to the activity of the viral promoter when an upstream cis-acting negative element was deleted or when the viral IE2 protein was present. The cellular protein(s) that binds to the cis-acting negative element requires further investigation. The cellular protein that binds to the cis-acting positive element was characterized. Two DNA sequence-specific protein complexes were detected with DNA probes spanning the region containing the cis-acting positive element and human cytomegalovirus-infected human fibroblast cell nuclear extracts. The more slowly migrating complex was labeled complex A, and the faster was labeled complex B. Only complex B was detected with mock-infected cell nuclear extracts. Competition experiments confirmed the specificity of the A and B complexes. The protein bound to the DNA in both the complexes contacts a CCAAT box imperfect dyad symmetry (5'CCAATCACTGG3'). Either CCAAT box within the dyad symmetry could compete for binding the nuclear factor. Mutation of the CCAAT box dyad symmetry resulted in a decrease of the transcriptional activity from the UL4 promoter. A cellular transcription factor, antigenically related to nuclear factor-Y (NF-Y), was found in both complexes A and B. Events associated with viral infection caused phosphorylation of protein complex A. Dephosphorylation of the DNA-binding protein converts complex A to complex B. The effect of phosphorylation of NF-Y is not known.

Documentos Relacionados