A eletroforese capilar para a separação das metalotioneínas da cianobactéria (Synechococcus PCC 7942) e de mamíferos / Capillary electrophoresis for the separation of cyanobacterial metallothionein (Synechococcus PCC 7942) and mammals

AUTOR(ES)
DATA DE PUBLICAÇÃO

2011

RESUMO

Metallothioneins (MTs) are low molecular weight proteins, which main functions are the regulation of metals levels in the body and detoxification. The capillary electrophoresis (CE) characterization of MT from Synechococcus cyanobacteria was attained by comparison with commercial standards of horse kidney and rabbit liver MTs. The influence of electrolyte, such as phosphate, borate and TRIS-HCl buffers on the separation performance were tested. Also, parameters such as voltage potential, capillary length and capillary inner diameter were investigated to attain optimized separation of mammal and Synechococcus MTs. The electrophoretic profiles of MTs revealed four abundant metallothionein isoforms for the horse kidney sample, one for rabbit liver MTII and two for cyanobacteria Synechococcus. The separation by CE of horse and cyanobacteria MTs mixtures differentiated two sets of signals, the first with four peaks corresponding to the horse sample and the last to Synechococcus. The mixture of rabbit liver MT and cyanobacteria MTs presented a first peak for rabbit MTII and a second for cyanobacteria. Tests were performed trying phosphate, borate and TRIS-HCl buffers, however the best results were attained with TRIS-HCl buffer (70 mM, pH 8.2) with addition of 5% methanol. Different capillary lengths of 40, 50 and 60 cm and two internal diameters of 75 and 25m were tested. Also, voltages of 10, 15, 20 and 25 kV were studied. The best experimental conditions were attained using a 60 cm long capillary, TRIS-HCl plus 5% methanol as electrolyte, the application of 20 kV which allowed maintaining a separation current of 42 müA. Results demonstrated that capillary electrophoresis was efficient for separation of MTs of mammals from that of Synechoccocus due their differences on size to charge

ASSUNTO(S)

metalotioneínas de mamíferos separação por eletroforese capilar capillary electrophoresis separation cyanobacteria metallothioneins mammal metallothioneins metalotioneínas de cianobacteria

Documentos Relacionados