Simulação de grandes escalas para análise numérica da esteira aerodinâmica da turbina eólica NREL UAE Phase VI

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

2012

RESUMO

The Unsteady Aerodynamics Experiment Phase VI, which has been carried out in 2000 by the US National Renewable Energy Laboratory (NREL) at the NASA Ames wind tunnel, has been numerically reproduced. The purpose of this work is to study the characteristics of the wind wake produced by the 10 meter two bladed wind turbine, operating at a constant rotational speed of 72 RPM, subject to a free stream wind velocity of 9 m/s, inside a wind tunnel in which dimensions are 36.6 m in width, 24.4 m in height and length of 170 m. To achieve that, the ANSYS FLUENT version 13.0 commercial code, based in the Finite Volume Method to numerically solve the Navier-Stokes equations in transient state, has been used, together with the Large Eddy Simulation (LES) to characterize the turbulence. Geometries of all the machine components have been created in CAD software. A disc shaped moving domain, containing the blades and hub, has been created separately, and later inserted into the main, static domain, using the Moving Mesh tool available in the software. Both domains have been filled with meshes composed by tetrahedra. Data collected at the numerical simulations have been compared to experimental wind speed data provided by two sonic anemometers installed 5.8 m downstream from the rotor, for which a good agreement has been found, with differences of approximately 1% to the anemometer 1 and 6% to the anemometer 2. Results of wind velocity at the tunnel centerline and velocity profiles downstream have been compared with recent numerical study, and show important differences between data obtained by LES, especially with regard to the detection of peaks and fluctuations related to the turbulent scales, and data obtained by the classic turbulence modeling, RANS. Disturbances have passed the 10 diameter mark and reached the end at the domain located at 15 diameters. The wake did not show axial symmetry and the point of maximum reduction in the flow speed was detected outside the rotor centerline.

ASSUNTO(S)

simulação numérica turbinas eólicas wind wake dinâmica dos fluidos computacional horizontal axis wind turbine computational fluid dynamics nrel uae phase vi large eddy simulation

Documentos Relacionados