Projeto, construção e avaliação preliminar de um reator de leito fluidizado para gaseificação de bagaço de cana-de-acucar

AUTOR(ES)
DATA DE PUBLICAÇÃO

1996

RESUMO

The present interest in biomass gasification throughout the world is fundamented in two matn aspects: a) the potential for commercial development of the BIG/GT-CC (Biomass Integrated GasifierslGas Turbine-Combined Cycles) technology which allows costs of US$ 0,038/kWh against some US$ 0,08/kWh when utilizing existing the Rankine cycle conventional systems: the use of biomass gasification may contribute to improve the CO2balance and reduce NOx and SOx emissions in the atmosphere because the source of energy utilized is biomass and recovers a carbon which is already present in the biosphere. Several projects are being oriented in this direction throughout the world and are lead by private companies and research groups ITom universities. The School of Agricultural Engineering- FEAGRI ITom the State University of Campinas-UNICAMP, Brazil, in cooperation with the School of Mechanical engineering-FEM/UNlCAMP has developed a prototype of a fluidized-bed reactor to gasify by-products ITomthe sugar-ethanol industry, such as the bagasse and the trash (Ieaves and tops). To implement this research it was necessary to develop a method for sizing the reactor combining practical parameters and a theoretical approach. In this project it was considered also the sizing of other auxiliary systems: the gasifying agent (air) distribution, the biomass feeding, and the cyclone for gas purification. The construction and assembling of the whole installation as well as the structure was conducted by Termoquip Energia Alternativa Ltda, a leading enterprise dedicated to biomass gasifier construction with factory located in Campinas, Brazil. The first "cold" tests in gasification conditions allowed to conflrm the difficulties and limitations imposed by the biomass feeding system (screw type). It was almost impossible to conduct experiments when working with bagasse "in natura" and straw. However, the obtained results when bagasse pellets were used indicated acceptable reactor energy efficiencyfor an air factor in the range of 0.17 to 0.22. The obtained gas low heating value was 4 MJ/Nm3which was considered acceptable for air gasification. The higher reactor "cold" and "hot" efficiencies were 29,23% and 33.42%, respectively.They were obtained for air factors ofO.22. However, it was not possible to obtain higher efficienciesbecause the reactor operating conditions did not allow tests with higher air factors. High energy losses to the environrnent are probably the main cause for low efficiencies. Within these losses are included the non-gasified carbons which IX rernained in the reactor bed and the losses with tar and solids or particulate found in the exiting gas after the cyclone. These losses were not evaluated due to the lack of appropriated experimental equiprnent. The overall thermodynamic evaluation was done calculating the energy losses ITornthe sensible enthalpy ITornthe exiting gas which values were considered acceptable for the studied air-factor

ASSUNTO(S)

bagaço de cana gaseificação energia da biomassa leito fluidizado

Documentos Relacionados