Monitoramento temporal e espacial de contaminações bacterianas na produção de bioetanol: caracterização molecular por T-RFLP e detecção quantitativa por qPCRde comunidades formadoras de biofilmes / Temporal and spatial monitoring of bacterial contamination in bioethanol production: a molecular characterization by T-RFLP and quantitative detection by qPCR of community-formers biofilms

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

14/09/2012

RESUMO

Bacterial contamination by Lactobacillus, Bacillus and Leuconostoc and other lactic acid bacteria is one of the main factors that affects the yield in alcoholic fermentation process. Biofilm formation protects the bacteria community and it is a permanent source of contamination. For characterization of these contaminations in (1) biofilms from centrifuge, tank fermentation, heat exchanger and water pipe and (2) molasses, must, yeast, yeast treated (with H2SO4) and wine, samples were taken at two different periods from fermentation system characterized by high alcohol yields (16%). Restriction enzymes AluI, BstUI, HaeIII, HinfI, MseI and MspI used in T-RFLP analysis were defined by 16S rRNA gene sequences analysis in silico from common contaminants. These enzymes generate high number of unique T-RFs between 30 and 650 bp. DNA from samples were used as template in T-RFLP reactions in order to obtain molecular profiles of microbial communities present at each sample. Shannon diversity index was calculated based on T-RFs numbers. Principal component analysis (PCA) and phylogenetic inference of contaminants were performed based on T-RFs profiles. The main contaminant bacterial taxa were quantified by qPCR using specific primers designed in this study and considering the average of 16S rRNA gene copies previously counted into the genome of each bacterial taxon. Water pipe biofilm showed the highest rate of bacterial diversity in the samples collected in the first sampling period. For the samples collected in the second sampling, the highest rate of bacterial diversity was revealed for molasses and must. PCA suggested that biofilms (but not external sources) are the main contaminants in the studied fermentation process. It is probably due their similarities with the composition of other analyzed communities. Lactobacillus and Bacillus species predominated in first sampling period. Halomonas, Streptococcus, Lactococcus and Pseudomonas were detected in biofilm and liquid samples. They were the main contaminants from biofilm at this time of sampling. In the second sampling period, Bacillus was the most common genera and other lactic acid bacteria such Streptococcus, Staphylococcus and Lactobacillus were also the most frequent contaminants. These results agree with other reported in the literature about conventional fermentation systems. Only the primers designed in this study to amplify the 16S rRNA gene of Burkholderia, Pseudomonas and Weissella showed specificity in tests with bacterial strains. Halomonas sp. was revealed in biofilms from tank fermentation by DNA sequencing using designed primers for genera. Halomonas can produce levan and may consume sucrose available for generation of alcohol. Centrifugal biofilm had the highest amount of bacteria in both sampling periods (1.93E+06 CFU.mg-1 and 2.14E+07 CFU.mg-1, respectively). In liquid samples, yeast had the highest amount of bacteria in both sampling periods (1.03E+08 CFU.ml-1 and 2.96E+06 CFU.ml-1, respectively); it shows significant levels of contaminants. Burkholderia and Pseudomonas were more abundant among biofilm samples of all samplings. Burkholderia was present in high quantities in the majority of liquid samples taken during the first sampling period; Pseudomonas and Weissella equivalently predominated among samples taken during the second sampling period

ASSUNTO(S)

alcoholic fermentation bacterial contaminants biofilm biofilme contaminantes bacterianos diversidade diversity primers qpcr qpcr t-rflp t-rflp primers fermentação alcoólica

Documentos Relacionados