Modelagem de equilíbrio líquido-líquido, líquido-vapor e líquido-líquido-vapor para sistemas binários, ternários, quaternários e pseudo-quaternários, envolvendo a produção de biodiesel / Modeling of liquid-liquid, liquid-vapor and liquid-liquid-vapor equilibria for binary, ternary, quarternay and pseudo-quaternary systems involving biodiesel production

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

19/01/2012

RESUMO

The worldwide energy demand increases every year. This demand will reach levels that cannot be supplied by current conventional fossil fuel resources. In this context, biofuels arise as a growing primary source of energy, raising research opportunities and encouraging technology development. An important technical issue related to biofuels development is the phase equilibrium among their components. This work investigates the vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) of binary, ternary and quaternary systems composed by vegetable oil, alcohol, glycerol and ester, involved in biodiesel production. The Gibbs energy minimization was used to calculate the amount of each phase present in a particular condition of pressure and temperature, as well as the composition of each phase predicted. The Soave-Redlich-Kwong (SRK) equation of state with van der Waals mixing rule, with two adjustable parameters (vdW-2) was employed. The GAMS® 23.2.1 (General Algebraic Model System) in combination with the solver CPLEX was used to tackle the large and complex mathematical models. The minimization of the Gibbs energy was done using a discretized procedure, so that the problem could be solved as a linear programming approach. The proposed model is also used to predict the chemical and phase equilibrium for eight types of vegetable oils in biodiesel production. For this purpose it was necessary to estimate the physical properties of these various components and a search for methods of prediction by group contribution was made to physical properties not found in the literature. The experimental data were correlated quite well by the Soave-Redlich-Kwong (SRK) equation of state, with absolute medium deviations and computational time for binary, ternary and quaternary systems using methanol as a compound of: 0.83% and 0.17s, 1.39% and 27s and 1.30% and 6s, respectively. Using ethanol as a compound, the absolute medium deviations and computational time for binary and ternary systems of: 0,64%, 2,10% , 0,14s and 26s.

ASSUNTO(S)

biodiesel equilibrio de fase equlibrio quimico programação linear biodiesel phase equilibrium chemical equilibrium linear programming

Documentos Relacionados