Mirmecofilia em Parrahasius polibetes (Lepidoptera: Lycaenidae) : historia natural, custos, seleção de planta hospedeira e beneficios da co-correncia com hemipteros mirmecofilos / Mymecophily ion Parrhansius polibetes (Lepidoptera: Lycaenidae) : natural history costs, host-plant selection, and benefits of co-ocurrece with myrmecophilous hemipterans

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

09/04/2010

RESUMO

Ants are one of the most prominent groups of terrestrial organisms in terms of diversity, relative abundance and biomass. Their importance is due primarily to eusocial behavior combined with complex communication systems. Tropical foliage is rich in renewable feeding sources that promote ant foraging. As some of the most important predators on plants, ants strongly affect the herbivorous insects. The presence of ants on foliages may affect herbivores by two ways: (1) decreasing herbivore individual numbers due to antagonistic interactions (e.g., aggressiveness, predation); (2) providing an enemy-free space for myrmecophilous herbivores (i.e. those living in close associations with ants). The symbiotic interaction between Lepidoptera and ants is widespread but only among two butterfly families (Lycaenidae and Riodinidae). Due to the great importance of myrmecophily for the morphology and biology of these butterflies, it is supposed that much of the evolutionary history of organisms, including diversification, would be explained by their interactions with ants. However, most of the knowledge about the evolutionary ecology of lycaenids is based on studies of well known Palaearctic, Oriental, and Australian species while little is known about the rich Neotropical fauna, which contains nearly 1,200 species. Larvae of Parrhasius polibetes (Stoll) (Lepidoptera: Lycaenidae) co-occur spatially and temporally with honeydew-producing hemipterans on the host plant Schefflera vinosa (Araliaceae). This study describes new aspects of morphology and natural history of immature stages of P. polibetes, including costs of myrmecophily, host plant selection, and benefits of co-occurrence with hemipteran trophobionts. The development cycle from egg to adult is approximately 36 days, and includes four larval instars. The eggs are laid exclusively on reproductive tissues (flower buds) of the host plants. The larvae are polyphagous, and have already been recorded on 28 plant species from 16 families. Most of the observed host plants of P. polibetes present some kind of liquid reward potentially used by ants (78.57%), either honeydew-producing hemipterans and/or extrafloral nectaries. From the third instar on, the larvae are facultatively tended by more than fifteen ants species in three subfamilies (Formicinae, Myrmicinae, and Ectatomminae), especially ants of the genus Camponotus Mayr. As in other Lycaenidae, interactions between larvae and ants are mediated by a specialized gland (dorsal nectar organ) on the seventh abdominal segment, which produces caloric liquid rewards for ants. Therefore it is expected that the production of these secretions entail costs for the larvae. For P. polibetes, it is shown that Camponotus crassus and Camponotus melanoticus ants differ in the intensity of tending levels to larvae, with C. melanoticus presenting increased tending rates compared to C. crassus. This difference can lead to different costs for the larvae. For instance when tended by C. melanoticus, larvae take longer to pupate. However, the pupal weight and size of adults are not affected by ant tending, suggesting that P. polibetes has compensatory mechanisms to minimize the costs of myrmecophily. This is the first demonstration that specific differences in ant tending may affect performance parameters in an insect trophobiont. In the field, experiments involving the manipulation of ant-treehopper associations on host plants demonstrated that the spatial co-occurrence between P. polibetes caterpillars and honeydew-producing hemipterans is caused by two factors: 1) females are able to detect ant-treehopper associations on foliage before oviposition, and lay eggs in their vicinity; 2) larvae that develop near ant-tended treehoppers survive better than larvae on plants without such association. This effect occurs because the presence of ant-treehopper associations reduces the abundance of potential natural enemies (spiders and parasitoid wasps) of the caterpillars. Moreover, the larvae are more easily found by prospective tending ants that are recruited to nearby honeydew-producing treehoppers. That is, the presence of ant-treehopper associations creates an "enemy-free space" on the host plant, which is exploited by P. polibetes. These results show that a traditional pairwise approach is obviously inappropriate to assess the selective pressures operating within such multi-species systems

ASSUNTO(S)

cerrados formiga lepidoptero morfologia (animais) mutualismo cerrados ants lepidoptera morphology (animals) mutualism

Documentos Relacionados