Imunoproteção de ilhotas pancreáticas microencapsuladas em biomateriais inovadores e seu potencial terapêutico no diabetes mellitus tipo 1 / Immunoprotection of pancreatic islets microencapsulated in inovative biomaterials and its therapeutic potential in type 1 Diabetes Mellitus

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

08/05/2012

RESUMO

Transplantation of microencapsulated islets represents an attractive therapeutical approach to treat type 1 Diabetes Mellitus, accounting for an improved glycemic control and the abolishment of immunosuppressive therapies. However, maintenance of long-term β-cell viability remains a major problem. During islet isolation, the loss of extracellular matrix interactions and the hypoxic conditions thereafter dramatically affect β-cell survival and function. Objective To lessen the burden of islet stress and achieve a better outcome in islet transplantation we tested the addition of perfluorocarbon (PFC) or laminin (LN), molecules associated respectively with oxygenation and cell-cell interaction, to Biodritin, an alginate-based material suitable for cell microencapsulation. Methodology To test the stability of PFC-Biodritin and LN-Biodritin composites, microcapsules were subjected to different stresses (rotational, osmotic, temperature and culture) for 7 and 30 days. To assess biomaterial purity microcapsules were co-incubated with RAW264.7 murine macrophage cell line for 3, 9 and 24h and macrophage activation was detected through mRNA levels of IL-1β and TNFα. Microcapsules were implanted i.p. in mice and retrieved after 7 or 30 days, for biocompatibility analyses. Gene expression at mRNA (bax, bad, bcl-2, bcl-XL, xiap, caspase 3, mcp1/ccl2, hsp70, ldh, insulin 1 and 2) and protein (Bax, Bcl-XL and Xiap) levels, together with Caspase3 activity, were evaluated in islets microencapsulated in PFC- or LN-Biodritin, upon culturing for 48h in normoxic or hypoxic (<2% O2) conditions. Diabetic mice were transplanted with PFC- or LN-Biodritin microencapsulated islets, followed by assessments of body weight, glycemia and graft function by oral glucose tolerance tests (OGTTs). Microencapsulated islets were retrieved from normoglycemic or hyperglycemic mice and biocompatibility analyses of the beads together with a functional assessment of the graft followed. After graft removal, normoglycemic animals had their glycemias monitored to attest the efficacy of the transplanted islets. Results PFC- and LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. For both biomaterials in normoxia and hypoxia a modulation in gene expression was observed in islets associated with a protection against apoptosis. Also, a decreased expression of stress-related genes (mcp1, hsp70) was evidenced. ldh mRNA levels were down-regulated in PFC-Biodritin microencapsulated islets but upregulated in the presence of LN. Increased levels of insulin mRNA were observed. The differences seen in protein expression indicated the same anti-apoptotic pattern. Caspase3 activity was not different between groups. Concerning diabetes reversal experiments, only mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome, with 60% remaining euglycemic at 198 days post-surgery, compared with 9% for the Biodritin group. OGTT showed that mice transplanted with encapsulated islets secreted more insulin than normal mice, 60 (LN-Biodritin) or 100 days (PFC- and LN-Biodritina) posttransplant. Hyperglycemia was achieved after the retrieval of microcapsules showing graft efficacy. Retrieved microcapsules revealed an extensive overgrowth in most beads from hyperglycemic mice. A static glucose stimulated insulin secretion test revealed that only islets from normoglycemic subjects were able to secrete insulin according to glucose concentration. Conclusion- The addition of bioactive molecules to Biodritin may lessen the stress of isolated islets and have the potential to improve islet transplantation therapy.

ASSUNTO(S)

biodritin biodritina biologia celular cell biology diabetes mellitus tipo 1 laminin laminina microencapsulamento microencapsulation pancreatic islet transplantation perfluorocarbon perfluorocarbono transplante de ilhotas pancreáticas type 1 diabetes mellitus

Documentos Relacionados