HYBRID SYSTEM FOR RULE EXTRACTION APPLIED TO DIAGNOSIS OF POWER TRANSFORMERS / SISTEMA HÍBRIDO DE EXTRAÇÃO DE REGRAS APLICADO A DIAGNÓSTICO DE TRANSFORMADORES

AUTOR(ES)
FONTE

IBICT

DATA DE PUBLICAÇÃO

10/09/2012

RESUMO

Este trabalho tem como objetivo construir um classificador baseado em regras de inferência fuzzy, as quais são extraídas a partir de máquinas de vetor suporte (SVMs) e ajustadas com o auxílio de um algoritmo genético. O classificador construído visa a diagnosticar transformadores de potência. As SVMs são sistemas de aprendizado baseados na teoria do aprendizado estatístico e apresentam boa habilidade de generalização em conjuntos de dados reais. SVMs, da mesma forma que redes neurais (RN), geram um modelo caixa preta, isto é, um modelo que não explica o processo pelo qual sua saída é obtida. Entretanto, para alguns problemas, o conhecimento sobre como a classificação foi obtida é tão importante quanto a classificação propriamente dita. Alguns métodos propostos para reduzir ou eliminar essa limitação já foram desenvolvidos, embora sejam restritos à extração de regras simbólicas, isto é, contêm funções ou intervalos nos antecedentes das regras. No entanto, a interpretabilidade de regras simbólicas ainda é reduzida. De forma a aumentar a interpretabilidade das regras, o modelo FREx_SVM foi desenvolvido. Neste modelo as regras fuzzy são extraídas a partir de SVMs treinadas. O modelo FREx_SVM pode ser aplicado a problemas de classificação com n classes, não sendo restrito a classificações binárias. Entretanto, apesar do bom desempenho do modelo FREx_SVM na extração de regras linguísticas, o desempenho de classificação do sistema de inferência fuzzy obtido é ainda inferior ao da SVM, uma vez que as partições (conjuntos fuzzy) das variáveis de entrada são definidas a priori, permanecendo fixas durante o processo de aprendizado das regras. O objetivo desta dissertação é, portanto, estender o modelo FREx_SVM, de forma a permitir o ajuste automático das funções de pertinência das variáveis de entrada através de algoritmos genéticos. Para avaliar o desempenho do modelo estendido, foram realizados estudos de caso em dois bancos de dados: Iris, como uma base benchmark, e a análise de resposta em frequência. A análise de resposta em frequência é uma técnica não invasiva e não destrutiva, pois preserva as características dos equipamentos. No entanto, o diagnóstico é feito de modo visual comparativo e requer o auxílio de um especialista. Muitas vezes, este diagnóstico é subjetivo e inconclusivo. O ajuste automático das funções de pertinência correspondentes aos conjuntos fuzzy associados às variáveis de entrada reduziu o erro de classificação em até 13,38 por cento em relação à configuração sem este ajuste. Em alguns casos, o desempenho da configuração com ajuste das funções de pertinência supera até mesmo aquele obtido pela própria SVM.

ASSUNTO(S)

resposta em frequencia frequency response impedancia impedance classificacao classification linguistica linguistics extracao de regras extraction of rules svm svm

Documentos Relacionados