Growth modeling of Aspergillus niger in mango nectar, as a function of pH and temperature. / Modelagem do crescimento de Aspergillus niger em nectar de manga, frente a pH e temperatura.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

Em 2005, a produção mundial de manga ?in natura? foi de 850000 toneladas, sendo o que Brasil ocupa o sétimo lugar no ranking mundial de produção. Neste mercado, o néctar de manga ocupa o terceiro lugar da preferência mundial por sabor. Considerando-se que os contaminantes emergentes deste produto são fungos que apresentam características de resistência ao processo de pasteurização empregue pelas indústrias, torna-se essencial que se conheça o nível de contaminação do produto por estes bolores ermoresistentes, bem como que se identifique qual espécie é a mais termoresistente isolada do produto. Além disso, como o processo de pasteurização por si só não é capaz de eliminar totalmente essa micobiota contaminante, sem alterar sensorialmente o produto, é indispensável o estudo do efeito de fatores controladores do crescimento destes microrganismos termoresistentes, bem como que se modele seu crescimento em função de alterações nestes fatores. Considerando o exposto, esta pesquisa visou: i. quantificar, isolar e identificar o bolor mais termoresistente presente em néctar de manga; ii. avaliar o efeito das variáveis controladoras do crescimento sobre os parâmetros de crescimento desse isolado, quando em dois níveis de inoculação, 6,8x100esp./mL e 9,3x103esp./mL, selecionando as variáveis de maior impacto, via modelagem preditiva primária; iii modelar os parâmetros de crescimento, como tempo de adaptação (l; dias) e taxa de crescimento (m; mm.dia-1) do bolor mais termoresistente utilizando a modelagem polinimial de superfície de resposta. Para tanto, 50L de néctar de manga foram utilizados para o isolamento das linhagens termoresistentes, conforme descrito por Bechaut &Pitt (2001). Para delineamento da termoresistência dos isolados utilizou-se metodologia adaptada de Baglioni (1998). No teste do nível baixo de inóculo (100esp./mL de néctar de manga), a temperatura variou de 12 a 25°C, o pH, de 3,2 a 4,8 e a aw de 0,979 a 0,988, mediante um desenho fatorial 23 acrescido de 3 pontos centrais e 6 axiais; já para o nível de inóculo de 103esp./mL, a temperatura variou de 18 a 22°C, o pH de 3,5 a 4,5 e aw de 0,970 a 0,990, mediante desenho fatorial 23 com 3 pontos centrais. Os dados do incremento diário nas medidas de diâmetro foram ajustados pelos modelos de crescimento de Baranyi (Baranyi &Roberts, 1995) e de Gompertz modificado (Zwietering et al., 1994). Para a modelagem secundária do crescimento, utilizou-se um desenho fatorial 22 com 3 pontos centrais e 4 axiais, sendo que a temperatura variou de 17,2 a 22,8°C e o pH variou de 3,2 a 4,7, com aw fixada em 0,980 (comum ao produto). Para estas avaliações o fungo foi inoculado em 230mL de néctar de manga, previamente esterilizados, dispostos em garrafas PET, higienizadas segundo Petrus (2000). A contagem total de bolores termoresistentes presentes no néctar de manga foi de 7,4x103esp./mL, deste total foram isoladas 8 linhagens diferentes, sendo a que apresentou maior termoresistência (100°C/15min) identificada como Aspergillus niger. Considerando-se o nível de inóculo baixo (6,8x100esp./mL de néctar de manga), observou-se que reduções de pH causaram aumento do tempo de adaptação (4 para 10 dias), bem como incrementos de 0,01 na aw o diminuíram em 3 dias, sendo que em temperaturas inferiores a 18°C não foi observado o crescimento do fungo. Já considerando-se o nível de inóculo de 9,3x103esp./mL, observou-se que a aw, na faixa natural ao produto, não apresentou impacto significativo (p<0,05) sobre os parâmetros de crescimento do microrganismo. Em condições de abuso de temperatura, uma redução de 5,6°C (22,8 para 17,2°C), implicaram em aumento de 23 dias no tempo de adaptação do fungo. De maneira semelhante, quando o pH do néctar de manga passou de 4,0 para 4,7, o tempo de adaptação do microrganismo passou de 11 para 3 dias e o diâmetro final da colônia triplicou. Cabe salientar que o modelo de Baranyi demonstrou melhor performance no ajuste dos dados de crescimento, com valores maiores valores de R2 (0,998). Para a modelagem polinomial de superfície de resposta a aw foi fixada em 0,980 (natural do produto). O modelo obtido para tempo de adaptação, com parâmetros significativos (p<0,05) temperatura, linear e quadrática e pH linear (com valores codificados) foi: . Este modelo foi verificado com R2 0,981, 1.06 de fator bias, 1,16 de fator exatidão e relação Fval/Ftab de 23,4. As análises estatísticas do modelo demonstraram que reduções no valor de pH em 0,5 unidade podem ser capazes de duplicar o tempo de vida útil do produto (10 para 20 dias). Efeitos semelhantes foram observados para reduções de temperatura da ordem de 0,8°C. Considerando-se a taxa de crescimento, o modelo polinomial obtido, tendo como fatores significativos (p<0,05) pH, linear e quadrático e temperatura linear e quadrática, com valores codificados, foi: Este modelo foi verificado com R2 0,882, 1.06 de fator bias, 1,16 de fator exatidão e relação Fval/Ftab de 2.6. Análises estatísticas do modelo demonstraram que, em pH 4,0 e 20°C é observada menor taxa de crescimento (1,33mm.dia-1). Assim sendo, os resultados demonstraram que pH e temperatura são fatores que exercem influência significativa sobre o crescimento de A.niger, em néctar de manga. Entretanto, estes fatores, nos níveis estudados, somente retardam o crescimento do microrganismo, não o impedindo. É essencial então o controle por refrigeração, visando evitar abusos de temperatura, já que em temperaturas ?15°C, independentemente do nível de inóculo utilizado, não foi notado o crescimento de A.niger. De modo similar, deve-se também optar pelo controle rígido nos valores de pH, pois alterações de 0,5 unidade podem implicar em mudanças severas na vida de prateleira do produto. Entretanto, somente alterações em valores de pH e temperatura não são suficientes para garantir a estabilidade microbiológica do produto, já que esta depende da qualidade da matéria-prima, dentre outros fatores, contudo, tanto pH quanto temperatura podem atuar como coadjuvantes na preservação do néctar de manga.

ASSUNTO(S)

response surfaces vida de prateleira predictive microbiology aspergillus niger microbiologia preditiva shelf life aspergillus niger superficies de resposta

Documentos Relacionados