Development of dissolved oxygen sensors using electrochemical and optic methods for real time monitoring of water quality. / Desenvolvimento de sensores de oxigênio dissolvido utilizando métodos eletroquímicos e ópticos para monitoramento em tempo real da qualidade da água.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

This work aims the development of a dissolved oxygen (DO) sensor using thick film technology, which has low cost of production and keeps sensors durability and precision acceptable for their use in the monitoring of water sources. This development also includes the complete electronic circuits for autonomous monitoring. Using the principles of oxygen electrochemical sensors based on Clark´s cell, this cell is initially built in PVC with traditional dimensions and aftwords build in LTCC (Low Temperature Co-fired Ceramics) technology as a substrate for the sensor in a microplanar configuration. This innovation allowed the study of constructive aspects, especially by changing substrate configuration, compositions for the electrolyte, thickness of the FEP or PDMS membrane, and the use of diverse electronic measurement techniques such as continuous polarization, pulsed polarization and cyclic voltammetry. Sensors submitted to continuous monitoring could reach 4 months of duration, using FEP membrane, drifting 0.14 % h-1. A 3 electrodes electrochemical cell configuration can extend the sensor´s life, presenting a low drift for both sensors types, because this new configuration attenuates the reduction of the silver over the cathode. Due to recent regulation of the optical detection of OD by ASTM, this work includes the measurement of DO through the detection of luminescent patterns. Such a system was developed by using high brightness LED´s as excitement sources and special photodiodes embedded with color filters as luminescence intensity detectors . The ruthenium complex (Ru(dpp)) immobilized in a sol-gel film and in PDMS was used as oxygen-sensitive material. The optical sensor immobilized in sol-gel film operating in continuous mode presented the lowest drift (0.03 % h-1) of all built sensors. The addition of a thin layer of black silicone over the sol-gel immobilization provided a greater durability and the immunity of the film and to sample salinity variation, without prejudice to the sensor response time.

ASSUNTO(S)

polarografic ltcc circuitos eletrônicos ltcc luminescence eletroquímica optic sensors cerâmicas verdes Água (qualidade) sensor de oxigênio dissolvido dissolved oxygen sensor sensores ópticos

Documentos Relacionados