Desenvolvimento e caracterização de dispositivo de PLLA/Trietil-Citrato associado à derme suína acelular para reparação de lesões cutâneas / Development and characterization of PLLA/Triethyl citrate device associated to acellular dermal matrix to repair cutanous wounds

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

15/02/2012

RESUMO

One of the challenges of the Tissue Engineering is to promote a better functioning of organs and tissues damaged by diseases or traumas. With target for developing a biphasic device for future regeneration and dermal application in Tissue Engineering and Regenerative Medicine, fibroblasts from VERO cell line were cultivated on a porcine acellular dermal matrix associated to a bioresorbable polymer (PLLA) with the addition of a plasticizer (TCS). For this present study, PLLA-TCS membranes and pure PLLA were prepared and analyzed by means of characterization tests such as Scanning Electron Microscopy (SEM), Dynamical Mechanical Analysis (DMA), Spectroscopy of the Fourier Transform Infrared, Nuclear Magnetic Ressonance (NMR 13C e 1H), Contact Angle and Differential Scanning Calorimetry (DSC). The results showed that the PLLA-TCS, became porous and more hydrophilic compared to pure PLLA, which increased its interaction with the fibroblast cells. After the association of the PLLA-TCS to the porcine dermal matrix, the samples were analyzed by Histological Techniques and Confocal Microscopy to evaluate the presence of collagen fibers and their organization within scaffold. Afterwards, a culture of fibroblasts cell on the biphasic device was performed after 2 days and 24 hours of cultivation the Cellular Viability test was done and posteriorly Scanning Electron Microscopy (SEM). The results of the biphasic device in relation to mechanical and biological tests showed the cell-support interaction, through the analysis of viability, cell morphology and structural organization of collagen fibers and polymer structure, are nontoxic to VERO cells. The material behaves as a cell substrate where proliferation of VERO cells and their infiltration was higher compared to the cell culture plate. It can therefore be concluded that the studied device has the potential to be used as a substitute for dermal implants in areas of extensive burns, for being highly porous, thus promoting increased migration, adhesion and cell growth while the device is degraded by the body. The device deformation capacity also helps in the substitute implantation for facilitating the surgical procedure which often need to stretch the material for coverage of the injury completely or natural movements of the skin after implantation. Furthermore, the device minimizes the chances of skin graft contraction as the gadget consists of a dermal component.

ASSUNTO(S)

poli (acido lactio) colágeno fibroblasto poly (lactic acid) collagen fibroblasts

Documentos Relacionados