Desenvolvimento de vetores não virais para entrega gênica baseados na cadeia leve de dineína Rp3 = : Development of non viral vectors for gene delivery based on dynein light chain Rp3 / Development of non viral vectors for gene delivery based on dynein light chain Rp3

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

11/07/2012

RESUMO

Gene delivery is a promising technique with great medical potential that consists in the introduction of exogenous nucleic acids, and can be applied for gene therapy as well as DNA vaccination. However, its use is still limited by the lack of an ideal delivery vector, which is both safe and efficient. Although much more effective, viral vectors still raise several concerns about its safety. On the other hand, non-viral vectors are safer and easier to manipulate, but less efficient. In this context "artificial viruses" are an interesting option, since they are non-viral vectors intended to explore the cell s architecture in an efficient way, to overcome a series of physical, enzymatic and diffusional barriers, while still preserving the safety of plasmid DNA (pDNA) vectors. The main objective herein is to exploit molecular motors, like dynein, to transport cargoes from the periphery to the centrosome of mammalian cells via the microtubule network. For that, human dynein light chain Rp3 was fusioned to a N-terminal DNA binding domain and a C-terminal membrane active peptide, TAT. The protein, named T-Rp3, has additionally a His.Tag. The shuttle protein built contains therefore different domains to promote pDNA condensation (DNA binding), to increase cell and nucleus penetration (TAT) and to enhance endosomal escape (His.Tag), besides the Rp3 to assist in the cytosol trafficking, thus covering most of the major obstacles to the vectors in intracellular level. Expression studies indicate that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. Gel retardation assays, dynamic light scattering and zeta potential studies indicate an efficient complex formation between pDNA and the fusion protein, resulting in a particle that is both small (~95 nm) and potivelly charged (+28 mV in the molar ratio of pDNA:protein 1:8000) Transfection of cultured HeLa cells indicates that T-Rp3 has a much higher transfection efficiency when compared to the nuclear protein Protamine (here used as a control), reaching a 900-fold increase in expression of transfected reporter gene, both in the same molar ratio of pDNA:protein 1:8000. When compared to Lipofectamine 2000TM, a well-known transfection reagent here used as a control, T-Rp3 showed to reach similar levels of efficiency, but with the further advantage of being less cytotoxic, as observed in cell viability assays. Transfections performed in the presence of the drug Nocodazole indicate that T-Rp3 efficiency largely depends on the microtubule network, since its efficiency is reduced by 92% when microtubules are depolymerized. From transfections in the presence of Choroquine we can deduce that endosomal entrapment remains a limiting factor. Finally, affinity chromatography experiments performed with the immobilized domain of dynein intermediate chain demonstrate that the recombinant light chain T-Rp3 retains the ability to interact with the dynein complex. Taken together, these results point to a strong participation of the microtubule network in the enhanced efficiency of T-Rp3.

ASSUNTO(S)

terapia gênica dineínas cadeia leve de dineína rp3 virus artificiais entrega gênica gene therapy dynein light chain rp3 dyneins artificial virus gene delivery

Documentos Relacionados