Desenvolvimento das barras imunosorventes de agitação e avaliação das técnicas extração sortiva em barra de agitação, microextração em sorvente empacotado e cromatografia líquida para análise de antidepressivos em amostras de plasma / Development of immunosorbent stir bars and evaluation of stir bar sorptive extraction, microextraction by packed sorbent and liquid chromatography for the analysis of antidepressants in plasma samples

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

In this work, polyclonal and monoclonal anti-fluoxetine antibodies were developed in rabbits and mice by immunization with fluoxetine-bovine albumin conjugate, respectively. The developed antibodies were characterized on the basis of the specificity against the drug by ELISA (enzyme linked immunosorbent assay) and, subsequently they were purified by labmade fluoxetine-agarose affinity column. The purified antibodies were covalently immobilized onto the glass surface of labmade SBSE (stir bar sorptive extraction) bars. After derivatization of the bars with 3-aminopropyltriethoxysilane, two distinct methods were evaluated for the antibodies coupling to the SBSE bars: activation with glutaraldehyde and succinylation activation via ester N-hydroxysuccinimide (NHS). The functionalization of SBSE bars was confirmed by the immobilization of peroxidase (HRP) instead of the antibody and, subsequent enzymatic assay with the bars. Several SBSE bars with different areas (1.2, 2.4, and 4.0 cm2) were prepared, among of them the largest immunosorbent area showed higher recovery rates of the drug. The evaluation of surface morphology of the SBSE immunosorbent bar was performed using scanning electron microscopy (SEM). The SBSE immunoaffinity variables were optimized to establish sorption equilibrium of antigen-antibody in a short time analysis and to obtain the limit of quantification compatible with the therapeutic range of the drug. The adsorptive capacities of the immunosorbent bars were 1.2 and 8 micrograms per cm2 for polyclonal and monoclonal antibodies, respectively. The developed immunosorbents showed cross-reactivity only with norfluoxetine (active metabolite of fluoxetine). The immunosorbent bars were reused approximately 30 times without significant loss of the extraction efficiency. Based on evaluated analytical validation parameters, the developed immunoaffinity SBSE/LC-FD methods are suitable for the determination of fluoxetine in plasma samples from patients on therapy with the antidepressant for therapeutic drug monitoring. Therefore, these methods were successfully applied for the analysis of plasma samples from elderly patients undergoing therapy with Prozac®. In this work, the method MEPS (microextraction by packed sorbent)/ LC-UV was also developed and validated for the simultaneous analysis of sertraline, paroxetine, citalopram, fluoxetine and mirtazapine in plasma samples for therapeutic drug monitoring. The MEPS process variables were optimized (pH, sample volume, ionic strength, draw-eject cycles volume and desorption conditions) to establish the sorption equilibrium in a short time analysis and to obtain adequate analytical sensitivity for determination of antidepressants within therapeutic range. The developed MEPS/LC-UV method allowed integration of the analytes desorption and sample injection in the chromatographic system (LC-UV) in a single step, using a MEPS extraction microsyringe. The MEPS extraction phase, M1 (C8/SCX) was reused over 50 times with minimum loss of extraction efficiency, proving the robustness of the sorbent material. According to the evaluated analytical validation parameters, the developed MEPS/LC-UV method is suitable for the determination of antidepressants in plasma samples for therapeutic drug monitoring.

ASSUNTO(S)

amostras de plasma antidepressants antidepressivos cromatografia líquida extração sortiva em barra de agitação immunosorbent imunosorvente liquid chromatography microextração em sorvente empacotado microextraction by packed sorbent plasma samples stir bar sorptive extraction

Documentos Relacionados