Avaliação da permeabilidade em membrana tubular de TiO2/AL2O3 dos constituintes do sistema reacional heterogêneo para produção de biodiesel / Assessment of tubular membrane permeability in the constituents TiO2/AL2O3 reaction heterogeneous system for the production of biodiesel






In addition to being biodegradable and renewable, Biodiesel presents physicochemical properties very similar to those of petroleum-based diesel, so a new engine is not required for its use. The most commonly used chemical process for obtaining biodiesel is transesterification. In this process, through the reaction of an alcohol with triacylglycerols (TAG) present mainly in vegetable oils and animal fat, biodiesel is formed with large quantities of glycerol as a byproduct. The presence of glycerol is unwanted because besides reducing the productivity of biodiesel through the thermodynamic equilibrium established in the process, it also increases the cost due to the long time for settling and/or use of centrifuges for removing the glycerol from biodiesel. Taking into account this inconvenience, this paper proposes an alternative process for the separation of glycerol, using TiO2/Al2O3 membranes. Various systems were analyzed, focusing on the separation of glycerol, the increase of the permeate flux, and the increase in the TAG productivity in heterogeneous catalysis. At first we studied the permeability and selectivity of reagents and products obtained in the biodiesel synthesis with a membrane through binary experiments. From these results a new configuration of the system was established, with subsequent analysis of the new interaction in mixtures of the four components of the process (oil, Ethanol, Biodiesel, glycerol) using a factorial design as tool. Results presented in the factorial design generated models that describe with 95% reliability the glycerol rejection coefficient and the permeate flux compared to the analyzed factors (level of emulsification, molar ratio of oil/ethanol and TAG conversion). A best range of factors that result in a maximum glycerol rejection with maximum permeate flux was selected, obtaining a fairly representative result of the process showing a good permeate flux (90.11 kg/h.m2) with high glycerol rejection rate (98.69%). Subsequently, the study of the reaction and separation simultaneous process was proposed (fixed catalytic bed involved in a membrane) selecting an heterogeneous catalyst (SrO on alumina) to facilitate the separation process and significantly reduce the number of purification steps of products. Results of biodiesel conversion were low, preventing a full assessment of the system with this configuration considering simultaneous reaction and separation.


separação de membrana membrane separation

Documentos Relacionados